Amalgamated Worksheet \# 4

Various Artists

April 23, 2013

1 Peyam Tabrizian

Complex Spectral Theorem Let V be a vector space over \mathbb{C} and $T \in \mathcal{L}(V)$. Then V has an orthonormal basis of eigenvectors of T if and only if T is normal

Real Spectral Theorem Let V be a vector space over \mathbb{R} and $T \in \mathcal{L}(V)$. Then V has an orthonormal basis of eigenvectors of T if and only if T is self-adjoint

Problem 1:

Suppose V is a vector space over \mathbb{C} and $T \in \mathcal{L}(V)$ is normal. Show that if every eigenvalue of T is real, then T is self-adjoint.

Problem 2:

Suppose A is a symmetric matrix over \mathbb{R}. Show that if $|\lambda|=1$ for every eigenvalue λ of A, then $A^{2}=I$.

Problem 3:

(if time permits) If $U=\mathcal{P}_{2}(\mathbb{R})$, what is its complexification $U_{\mathbb{C}}$? Suppose $S \in \mathcal{L}(U)$ is defined by $S(p)=p^{\prime}$, what is its complexification $S_{\mathbb{C}}$?

Problem 4:

Briefly explain how to prove the real spectral theorem from the complex spectral theorem

2 Daniel Sparks

1. Prove some of the properties of adjoints listed on $\mathrm{p} .119 ; S, T$ are operators on a finite dimensional complex vector space V.
(a) $(S+T)^{*}=S^{*}+T^{*}$
(b) $(a T)^{*}=\bar{a} T^{*}$
(c) $\left(T^{*}\right)^{*}=T$

Axler suggests thinking about $T \mapsto T^{*}$ as a function $*: \mathcal{L}(V) \rightarrow \mathcal{L}(V)$.
(f) Look up the definition of a \mathbf{C}^{*}-algebra.
(g) Show that $*$ is an isomorphism of \mathbf{R} vector spaces.
2. Prove in detail DWD Lemma 7.1. Namely, if T is normal on a finite dimensional complex vector space V, then $\operatorname{Null}(T)=\operatorname{Null}\left(T^{*}\right)$.
3. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be a 2×2 complex matrix. This determines a linear map $L_{A}: \mathbf{C}^{2} \rightarrow \mathbf{C}^{2}$ by $v \mapsto A v$. Using only the identity

$$
\left\langle L_{A} v, w\right\rangle=\left\langle v, L_{A}^{*} w\right\rangle
$$

show that $L_{A}^{*}=L_{\bar{A}^{t}}$, where $\bar{A}^{t}=\left(\begin{array}{cc}\bar{a} & \bar{c} \\ \bar{b} & \bar{d}\end{array}\right)$. "The adjoint of a matrix operator is the conjugate transpose." (For the ambitious, try an $n \times n$.)
4. Fill in the blanks. Let T be a normal operator on a finite dimensional C-vector space V. Consider the list of distinct eigenvalues of $T: \lambda_{1}, \cdots, \lambda_{m}$. (This list is nonempty becauase (a) \qquad .)

Let $U_{\lambda_{i}}$ be the (b) \qquad corresponding to λ_{i}. By (c) \qquad , we have a decomposition $V=U_{\lambda_{1}} \oplus \cdots \oplus U_{\lambda_{m}}$.

Let $e_{i}=\operatorname{dim} U_{\lambda_{i}}$ be the (d) of λ_{i}. Then we have bases $\beta_{i}^{\prime}=$ $\left\{u_{i, 1}^{\prime}, \cdots, u_{i, e_{i}}^{\prime}\right\}$ for each $U_{\lambda_{i}}$. We may use the (e) \qquad to obtain orthonormal bases $\beta_{i}=\left\{u_{i, 1}, \cdots, u_{i, e_{i}}\right\}$ of each $U_{\lambda_{i}}$. We know that the concatenated list $\beta=\left(\beta_{1}, \cdots, \beta_{m}\right)=\left\{u_{1,1}, u_{1,2} \cdots, u_{1, e_{1}}, u_{2,1}, \cdots, u_{m, e_{m}}\right\}$ is a basis for V because (f) \qquad . Notice that each of these basis vectors are normal (i.e. of norm 1) generalized eigenvectors, and that $u_{i, j} \perp u_{k, l}$ whenever $i=k$.

Now, since T is normal, because (g^{*}) \qquad we know that β is actually a basis of eigenvectors. Finally, because (h*) \qquad we know that $u_{i, j} \perp u_{k, l}$ whenever $i \neq k$. Therefore β is an orthonormal eigenbasis.

* These results do not have names, but can be found in DWD.

5. Review/redo carefully the proofs of the results cited in (g) and (h) of the previous exercise.
